## Ionic Partial Conductivity in Cr<sub>2</sub>O<sub>3</sub> Scales

H. Liu, M. M. Stack and S. B. Lyon Corrosion and Protection Centre, UMIST, P.O. Box 88, Manchester, M60 1QD, U.K.

Knowledge of electrical conductivity and defect structure, as well as corresponding ionic transport process in growing  $Cr_2O_3$  scales are of importance for both fundamental studies and application of chromia forming alloys. However, previous studies on  $Cr_2O_3$  are mainly based on oxide behaviour sintered chromia pellets <sup>1-4</sup>. Considering the difference between thermally grown scales and the sintered oxide in structure, stochiometry and purity, it is more significant to investigate the ionic transport process directly in thermally grown  $Cr_2O_3$  scales.

The objective of this work is to study ionic conductivity and temperature dependence in  $Cr_2O_3$  scales. An asymmetry polarisation technique was used to separate the ionic conductivity from electronic conductivity.  $Cr_2O_3$  scales were selectively grown on Ni-20%Cr alloy in H<sub>2</sub>/H<sub>2</sub>O vapour at 900°C for 24 hours.

A typical polarisation curve is shown in Fig1, from which the ionic transport number t<sub>i</sub> can be extracted. Fig.2 gives the distribution map of ionic transport number with temperature and applied voltage in Cr<sub>2</sub>O<sub>3</sub> scales. The map reveals that Cr<sub>2</sub>O<sub>3</sub> is an insulator at room temperature and becomes a mixed ionic and electronic semiconductor when the temperature is increased. The ionic transport number t<sub>i</sub> decreases with increasing temperature. Three regions in terms of the high ( $t_i > 0.5$ ), medium (0.5> $t_i > 0.2$ ) and low regions were identified in order to evaluate the variation in ionic transport numbers with temperature and applied voltage. Activation energies of 0.6eV for electronic conductivity, and of 0.3eV for ionic conductivity were obtained below 700°C, as indicated in Fig.3. Above 700°C, the chromia scale became an intrinsic electronic conductor, with a corresponding activation energy of 1.7eV. This value is consistent with previous data obtained from sintered chromia pellets<sup>1</sup>. However, this critical temperature is much lower than that for chromia oxide(1000-1200°C).

Based on the asymmetry polarisation curves, the concentration and mobility of ionic carriers and their temperature and potential dependence have been obtained. As can be seen in Table.1, the concentration of the ionic carriers is about  $3x10^{18}$ cm<sup>-3</sup> below 500 °C. Above 500 °C, it increases with increasing temperature. The mobility of ionic carriers is independent of temperature, and has a value of  $1 \sim 3x10^{-12}$  V<sup>-1</sup>sec<sup>-1</sup>.

This appears to be the first time such data have been in the literature.

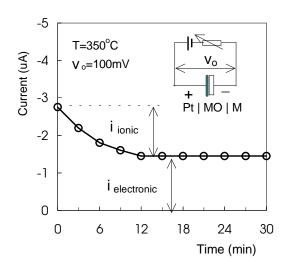



Fig.1 Asymmetry polarisation curve of Cr<sub>2</sub>O<sub>3</sub> scale

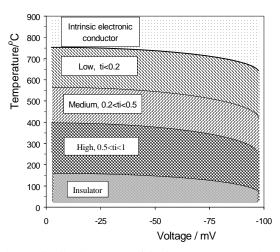



Fig.2 Distribution map of ionic transport numbers with temperature(T) and voltage( $V_o$ ) in  $Cr_2O_3$  scale.

Table.1 The concentrations of ionic carrier under different temperatures and potentials (unit: $10^{18}$  cm<sup>-3</sup>)

| different temperatures and potentials (unit:10 <sup></sup> cm <sup></sup> ) |      |      |      |      |      |       |
|-----------------------------------------------------------------------------|------|------|------|------|------|-------|
| $T(^{o}C)$                                                                  | 300  | 350  | 400  | 500  | 600  | 700   |
| 50mV                                                                        | 2.63 | 2.60 | 2.25 | 2.10 | 7.50 | 8.76  |
| 75mV                                                                        |      | 2.68 | 2.80 | 2.63 | 7.62 | 15.00 |
| 100mV                                                                       | 2.82 | 3.03 | 3.30 | 3.85 | 8.45 |       |
| 150mV                                                                       |      |      |      | 4.60 | 8.72 |       |
| 200mV                                                                       |      |      |      | 5.89 | 12.5 |       |

References:

A.Holt and P.Kofstad, Solid State Ionics 69(1994) 127.
A.Holt and P.Kofstad, Solid State Ionics 69(1994) 137.
P.Kofstad and K.P.Liierud, J.Electrochem.Soc 127, (1980), 2410.

4.T.Matsui and K.Naito, J.Nucl.Mater. 120 (1984) 115.